PLEASE REVIEW THE INFO Experiment

PLEASE REVIEW THE INFO 

Experiment

Pendulum and the Calculation of g

Experiment

Pendulum and the Calculation of g

Lab 6 -Simple Pendulum

Discussion and review

A simple pendulum consists of a mass (“bob”) suspended from a light string of length
L. The bob is pulled sideways such as the string makes with the vertical direction an angle θ less than 150. When is released it oscillates back and forth within a vertical plane, with the period of the pendulum given by: T = 2π

symbol

Description


T

Period of a pendulum to complete one cycle


L

Length of string


g

Acceleration due to gravity: 9.81 m/s2


Procedure

The lab activity uses a simulation developed by the University of Colorado at Colorado Boulder. Click on the link below and choose “Intro”.

Simple Pendulum Click here

1. The length of the pendulum should be set to the following lengths: 0.25, 0.5, 0.75 and 1m.

2. For each length, set the pendulum in motion by displacing the pendulum bob sideways such as the string makes

100 with the vertical direction
.

3. Start the timer when the strings appear to be aligned with the angle. Wait for next alignment and count first oscillation, the next alignment will be the second oscillation and so on. Count out a total of 10 oscillations and stop the timer precisely on the 10th oscillation. Record the total time elapsed for the 10 oscillations.

4. Repeat the previous step a total of 3 times and calculate the average of the three time trials

Tavg

5. Calculate the oscillation period,

T
, by dividing the average time by ten.

6. Calculate the acceleration due to gravity,

g
, for all lengths of the pendulum, using

T2
and the equation:

Length

(m)

Time [Trial 1]

(s)

Time

[Trial 2]

(s)

Time

[Trial 3]

(s)

Timeavg

(s)

T = Timeavg/10 (s)

T2 (s2)

g(m/s2)

gavg(m/s2)

1.00 m

0.75 m

0.50 m

0.25 m

Analysis

1. How is the period of the pendulum changing with length?

2. Why did you measure 10 periods of the pendulum instead of just 1?

3. What do you think the effect of the changing mass will be on the pendulum’s period if the length is fixed? Why?

You can check your assumption by running the simulation. Keep the angle to less than 150.

4. Calculate your percentage error as compared to the accepted value for
g, which is 9.81 m/s2.

% error = [
experimental value – accepted value] × 100

accepted value

2

www.HOLscience.com ©Hands-On Labs, Inc.

1

www.HOLscience.com ©Hands-On Labs, Inc.

image1.png

image4.png

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

ChartSPD-485 Literacy Case StudiesKey for PercentilesLow: Student scores lower than

Chart SPD-485 Literacy Case Studies Key for Percentiles Low: Student scores lower than the 21st percentile. Low to Average: Student scores in the 21st-40th percentile. Average: Student scores in the 41st-60th percentile. Average-High: Student scores in the 61st-80th percentile. High: Student scores in the 81st and above percentile. Elementary School

 Describe your motivating factors in providing healthcare to underserved communities in support of the Nurse Corps Scholarship Program mission. Provide

 Describe your motivating factors in providing healthcare to underserved communities in support of the Nurse Corps Scholarship Program mission. Provide specific personal and professional experience demonstrating your interest in positively impacting underserved communities (i.e., supporting or participating in a federal pipeline program (see Definitions), community service, internships, etc.).